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Low-Reynolds-number motion of particles with two or three 
perpendicular planes of symmetry 
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(Received 28 September 1978 and in revised form 18 May 1979) 

For a particle with two or three perpendicular planes of symmetry rotating at low 
Reynolds number in a Couette flow field, there are three orbits in which the motion 
is simply periodic. The three scalars Bi involved in Bretherton’s shape tensor are 
found experimentally from periods of rotation in these orbits. Experiments on right 
parallelepipeds, ranging from thin platelets through cubes to rectangular section rods, 
are described. Each of the Bi is found to depend on the aspect ratio of one of the 
particle cross-sections, with only slight influence from its third dimension. Results 
are expressed in terms of a relationship between this aspect ratio and that of an 
equivalent ellipse, incorporating a weak function of the third particle dimension. 
The equations of motion governing a general doubly periodic motion, and incorporating 
experimental Bi values, are integrated numerically and compared satisfactorily with 
experimental observations. 

1. Introduction 
Our starting point is Bretherton’s (1962) equation for the angular velocity wi of a 

neutrally buoyant, rigid particle suspended in a linear velocity field a t  low Reynolds 

where Cf is half the vorticity and Ajk the rate of deformation tensor. Conditions for its 
applicability are discussed in Brenner (1962, 1964), but in practice an important 
limitation on its use is our knowledge of the component values of the shape tensor 
Bijk corresponding to various particles. 

For a particle with t’wo or three mutually perpendicular planes of symmetry there 
are six non-zero components (Bretherton 1962; Brenner 1964) 

B,,, = B,,, = B,, B,,, = B,,, = B, and B,,z = B,,, = B,. (2) 

(3a) 

B, = - ( ~ 2 1 -  l ) / (r i+ I )  ( 3 b )  

and B3 = (3 - l ) / ( r i  + I ) ,  ( 3 4  

The classical result derived by Jeffery (1922) for an ellipsoid with semi-axes a,, u2, a, 
gives 

B, = ( ~ 2 1  - l)/(r; + I), 

where r, = a2/a3, r2 = .,/a3 and r3 = al/a2. 
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I n  more recent years there has been considerable progress in the analytical treat- 
ment of other particle shapes, but without exception these have been bodies of 
revolution. Youngren & Acrivos (1975) have presented a powerful numerical method 
for Stokes flow past a particle of arbitrary shape, and applied it to  spheroids and 
cylinders. We shall not review the theoretical work, but only note that no results 
are yet available for platelets, cubes and similar sharp-edged, crystal-like particles, 
which are of considerable interest in suspension rheology. We are concerned here with 
the experimental determination of the components of Bijk for these, and more generally 
for any particles with two or three mutually perpendicular planes of symmetry. 

Experimental work on sharp-edged bodies of revolution, namely disks and cylinders 
(Goldsmith & Mason 1967; Harris & Pittman 1975) is available. The single scalar B 
involved in Bijk in this case has been expressed in terms of an equivalent axis ratio 
p of an oblate or prolate spheroid 

Gierszewski & Chaffey (1  978) recently proposed the experimental determination of 
B,, B,, B, for particles with two perpendicular symmetry planes. They suggest 
simultaneous observation along the 01 and 0 2  directions of a particle suspended in 
the simple shear 

and measurement of the instantaneous values of the three Euler angles describing 
the particle orientation and their time derivatives. These, together with y ,  would be 
substituted into the equations of motion which, being linear in B,, B,, B,, could 
readily be solved for these quantities. They present the equations of motion, and 
illustrate the form of some orbits with results obtained by numerical integration. 

Very recently, Hinch & Leal (1979) have analysed the motion of a non-axisym- 
metric ellipsoid in the simple shear field ( 5 )  and demonstrated the ordered structure 
underlying the very complicated orbits. The motion is shown to be doubly periodic, 
with ‘a relatively rapid rotation which corresponds to the motion of axisymmetric 
particles around Jeffery orbits, and a slower drift which would be described as a 
periodic change in the orbit if the particle were axisymmetric’. They also investigated 
the stability of the three planar orbits obtained by aligning each of the ellipsoid axes 
in turn parallel to the vorticity. An important conclusion of their paper is that 
relatively small departures from axisymmetry result in profound changes in particle 
motion. Although the work refers specifically to  ellipsoids, its conclusions on the 
structure and stability of orbits apply qualitatively to  a wider class of particles with 
2 or 3 perpendicular symmetry planes. 

I n  %he present paper we describe an experimental determination for B,, B,, B,, 
which is somewhat simpler than that suggested by Gierszewski & Chaffey (1978). It 
involves observations along only the 0 2  direction and measurement of periods of 
rotation, which should be easier to obtain accurately than instantaneous rotation 
rates. We present results for part’icles in the shape of right parallelepipeds. The method 
is applicable to all particles with two or three perpendicular symmetry planes, and 
the resulting values for Bijk allow prediction of the rotation of an isolated particle 
in any locally linear velocity field. While this falls far short of a complete solution to 
the Stokes flow problem it can have important uses when a suspension is sufficiently 

v3 = Y X 2  (5) 
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dilute for the behaviour of an assembly of particles to  be deduced from knowledge of 
single particle motion. 

I n  a non-flocculating suspension, parbicle rotation and the resulting distribution 
of orientations will influence the bulk properties. Among these the most important is 
probably the deviatoric stress increment due to the suspended particles, but also 
included are transport properties and light scattering. The orientation of particles 
included in filled and reinforced plastics is usually determined by flow of a suspension 
prior to solidification, and this orientation has important effects upon the mechanical 
properties of the solid. (It should be mentioned, though, that in this case the suspending 
medium is generally non-Newtonian.) 

I n  the field of flocculating suspensions interest has recently turned towards the role 
of hydrodynamic forces in influencing colloidal stability. For all particles other than 
spheres the question of relative orientation becomes important. One needs, as an 
initial condition for this very difficult problem of particle interact'ion, information on 
probable Orientations as particles approach each other. Knowledge of single particle 
motion provides the starting point in determining this for dilute suspensions, in the 
absence of Brownian motion. 

2. Equations of motion 
The quantities Ci and A i j  in (1) are referred to Cartesian axes 0 1'2'3' fixed in the 

particle. The orientation of these relative to axes 0 1 2 3 fixed in space is expressed 
in terms of the Euler angles (see figure I )  and the transformation matrix il& as quoted 
by Jeffery (1922), for example. Jeffery also gives the relationships between the angular 
velocities and the time derivatives of 4) 8, $; 

wI = $cos8+& (6a )  

w2 = Bsin$-$sinOcos$ (6b)  

and w3 = 8 c o s $ + + s i n ~ s i n ~ .  ( 6 c )  

For a particle with two or three perpendicular symmetry planes, we express from 
(1) the angular velocities in terms of vorticity and rate of deformat'ion referred to 
0 1 2 3 for the flow field of (5), then substitute in ( 6 )  and solve for the angle derivatives:? 

(7 a )  

(7 b )  

+ = ~y + t y [ t ( ~ ~  + B ~ )  cos 8 sin 2# sin Z$ + cos 2 q 5 ( ~ ~  sin2 @ - B, C O S ~  $)I, 
6 = By[& sin 28 sin 2#(B3 cos2 $ - B, sin, $1 + 8 sin 8 cos 2# sin 2$(Bz + B,)] 

and 
4 = +y[ - 4 sin Z$ sin z${B, + C O S ~  e(B, + B, + B,)} 

+ cos 8 cos 2${B, cos 2$ + B, cos2 @ - B, sin2 $}I. ( 7 c )  

These equations describe the rotation of the particle subsequent to arbitrary initial 
conditions for 8, $, $, where y is either constant, or (as a consequence of the Stokes 
flow assumption) time-dependent. Hinch & Leal (1979) also give these equations, but 
in terms of differently defined Euler angles. I n  general, the motion is a complicated 

Gierszewski & Chaffey (1978) give these equations with wrong signs. The computations 
presented by them were, however, based on the correct form of the equations (private com- 
munication, 1978). 
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FIGURE 
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1 .  Enler angles. 0 123 fixed in space. 0 1'2'3' fixed in particle. 

tumbling. However, it  is clear that there are three orbits in which the motion is simply 
periodic, and that the corresponding equations of motion involve only one of the B, 
in each case. The cases are as follows: 

(1) 8 = 0" (see jgure  2 )  

For this case the particle spins about its own 01' axis with angular velocity, from (Ga), 

0 1  = 4 + $. 

4 + # = &y[ 1 + B, cos (24  + 2$)], 

(8) 

Substituting from (7a, c )  and simplifying, 

(9) 

whence, provided 1 B, 1 < 1, as in (3), 

tan($+$) = ( ~ ' ) ' t a ~ l ~ y T 1 ( 1 - B f ) 1 ]  1-B, 

and B, = I - ( W Y W I ~  I 
where TI is the period of rotation. 

(2) 8 = go", $ = 0" (seeJigure 3) 

Equation (7 a )  reduces to 

whence, provided JB,] < 1, 
4 = $7 - +yB, cos 24, 

tan$ = (t - ~ ~ ~ j ' t a n [ + y T z ( l  -B;)J]  
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FIGURE 2 .  Periodic orbit case 1 ,  s1ion.n at fi++ = 90". 

and B, = - 1[1- (4n/yT2)2]y. 

(3) 6 = go", $ = 90" (seeJigure 4) 

Equation 7 (a) reduces to 

whence, provided JB,J < 1, 
r$ = 47 + &yB3 cos 24, 
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1 

FIGURE 4. Periodic orbit case 3, shown at 4 = 90'. 

and B3 is given in terms of the period of rotation T3 by 

B3 = 1P- (4n/rT3)21*I. , (17) 

The work by Hinch & Leal (1979) indicates that we may in some cases expect one or 
other of these orbits to be unstable, in the sense that if the particle is not initially 
aligned exactly as indicated, then it is capable of moving a substantial way from the 
desired position, rather than continuing to rotate close to it indefinitely. This would be 
most likely for long rods and platelets. However, we found that any drift away from 
the desired orbits was sufficiently slow for (11)) (14) and (17) to be useful in obtaining 
values of Bi by timing the periods of rotation q:. 

3. Experimental procedure 
The velocity field w3 = yx2 was approximated in the annulus between Perspex 

cylinders counter-rotating about a vertical axis. The apparatus was that used 
previously by Harris & Pittman (1975). The annulus was 25 cm high, and bounded a t  
radii of 12.6, and 15-3 cm. Continuously variable gears enabled one to vary independ- 
ently the shear rate in the annulus and the position of the cylindrical fluid shell which 
is stationary relative to the observer. The suspending liquid was a Newtonian aqueous 
glucose solution with a viscosity at room temperature of approxima,tely 7 poise. 
Particles were machined from Tufnol and measured with a micrometer. By judicious 
prodding they were set up in the special orbits mentioned above, and brought to rest 
(in the sense of translation) relative to the observer by making slight adjustments to 
the cylinder gearing. Half-periods of rotation were then timed. Observation was by eye. 
Each data point was obtained as the mean of four or five results. 
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The apparatus was kept covered as far as possible, to minimize water absorption 
from the air by the glucose solution, which was periodically mixed. Any bubbles thus 
introduced were allowed to clear before experiments were started and care was also 
taken to avoid bubbles adhering to the particles as they were introduced into the 
liquid. 

To check on the values of Bi so obtained, particles were observed along the 0 2  
axis (i.e. along a radius of the cylinders) executing general doubly periodic orbits. 
CCTV was used with a video-recorder, and the particle images filled most of a 16-inch 
monitor screen. To establish the horizontal 0 3  direction, the free surface of the 
liquid was filmed. To establish the magnification factor on the screen a particle was 
filmed stationary, with its longest side set up perpendicular to the viewing direction. 
Recordings of the particle motion were played back, and at any convenient instant 
the tape was stopped and the positions of the particle edges marked on the screen 
using a felt-tip pen. The tape was then wound on slowly, counting the frames (50 per 
second), stopped again after a suitable number and the new position marked. The pro- 
cedure was continued aslong as desirable, and finally the horizontal datum was marked. 

A sheet of tracing paper was then taped onto the screen, the brightness turned full 
up, the markings traced and removed for analysis as follows. Let d,, d2,  d, be the 
particle dimensions in the directions of the particle axes OI', 02', 03',  andd, > d2 > d,. 
The projections of d, and 8 onto the 013 plane are measured. Call them I ,  and h 
respectively. Then 8 is given by 

sin8 = I [ 1 - ($)'.os2~]'l 

and q5 from 
cosq5 = [1- ($)111[1_(~)eco~2h]~ .  

In principle, @ can be found by measuring a, the angle between 0 3  and the projection 
of d, onto the 0 1 3  plane. Then 

(20) 
-sin 8- tanasin q5 cos 8 

tan a cos q5 
tan@ = 

Alternatively, using the angle between 0 3  and the projection of the shortest side 
d,, on to 013  (call i t p )  we have 

(21) 

In practice it was found difficult to get sufficiently accurate values of a or /3, and @ 
was not determined experimentally. 

sin 8+ t anp  sin 4 cos 8 
cos q5 t anp  ' 

cot @ = 

4. Results and discussion 
We first mention a set of experiments to determine Bi for six particles having the 

same dimensions d, = 1.75 mm, d, = 1-28 mm but with d, ranging from 9.5 to 2.5 mm. 
Four determinations of TI [see (1 I)]  were made for each particle and the means taken. 
A pooled estimate of variance gave 95 % confidence limits for the means of k 5 yo, 
and the means were found not to differ significantly at  the 95% confidence level. 
Thus in these experiments B, is, within experimental accuracy, a function only 
of a&,. 
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Now although for ellipsoids the B, are each functions of only one of the axis ratios, 
we would in general expect Bi to depend on all three particle dimensions. Our results 
raise the interesting possibility that for cuboids, dependence upon the third dimension 
is, at most, weak. This suggests representing data on the Bi in terms of equivalent 
ellipse axis ratios Pi by analogy with (3): 

and 

P4- 1 
Pi+ 1’ 

B, = - 

P2- I B --2 
2 -  Pi-1 

Pl- 1 B -- - P.Z+l 
and we may find that, approximately, 

and 

where 

We do not imply by this that  a cuboid corresponds in its rotation to any ellipsoid: 
for this to  be so, we should need 

p3 = P2lPl (26) 

(27) or equivalently B, B2 B3 + B1+ B2 + B3 = O ,  

which, presumably, is not in general true. An advantage of representing results in 
terms of Pi is that these quantities increase continuously with the Ti and are therefore 
more directly related to the experimental measurements than are the Bi. 

Values of Ti and hence Pi were obtained for 18 further particles having dimensions 
ranging from 0.26 to  16 mm and volumes from 2 to 72 mm3. We suspect from our 
preliminary experiments that the P, us. Ri relationship may be almost the same for 
the cases i = I, 2, 3. Plots of the data for the three cases are shown in figures 5-7. 
Now a cube shares with a sphere the property B, = B, = B, = 0 ,  so we should constrain 
any lines fitted to  the data to pass through P, = 1 a t  Ri = 1.  A least-squares fit of the 
pooled data for i = 1 , 2 , 3  gave 

pi = R9.823 (28) 

with a mean-squared deviation of 0.090. This line is shown on the three figures and 
very few points lie more than 10 % off it. 

However, figures 5-7 give the impression that points Pl more often lie below the 
line and P, values lie above it, while for P, the data is scattered evenly. This probably 
indicates a very weak dependence upon the third particle dimension. The form in 
which this enters the relationship is unknown, and so we arbitrarily introduce a 
parameter hi associated with Pi, where 

i hl = d,/(d,d,)& (2*5-9), 

h2 = d 2 / ( d l d 3 ) &  (0-4-3.8) 
and h, = d3/(dld,)* (0*08-0*5). 
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FIGURE 5. P, vs. R,:  A, experimental data points; ---, equation 28. 

1 ? 3 4 5 6 7 8 9 10 1 1  I ? -  13 14 15  16 17 18 19 20 

R2 

FIGURE 6. Pz us. R, :  A ,  experimental data points; -, equation 28. 

The bracketed figures indicate the range of values of hi applying in our experiments. 
Presumably any dependence of Pi on hi will be monotonic, and must be asymptotic 
to  finite limits as hi tends to zero or infinity. In  view of the apparent smallness of the 
effect there is little justification for anything more elaborate than a single parameter 
function of hi. We could also require the function to equal one when hi = 1. Such a 
one is provided by [fr + ( 1  + hi)-l]c and we introduce it as a factor to the right-hand 
side of our fitted expression. Pooling the data for i = 1 , 2 , 3  we find 
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1 2 3 4 5 h 7 8 9 10 

R3 

FIGURE 7 .  P3 vs. R,: A, experimental data points; __ , equation 28. 

from which the data has a mean-squared deviation of 0.070. The positive value for 
C is consistent with our idea that the high values of h, are associated with PI values 
slightly below the mean line, etc. The mean squared deviation is also reduced very 
slightly. But the fitted expression indicates a dependence upon h ,  of no more than a 
couple of per cent and most of the scatter in the data is apparently due to experimental 
errors. This is believed to arise very largely from small geometrical imperfections 
in the particles, and the difficulty of setting them up precisely in the required orbits. 

The success of the B, values, obtained from (30) and (23)-(24), in characterizing a 
general doubly-periodic motion is now examined. Consider an experiment carried out 
under the following conditions: 

d, = 8.05mm, d, = 1-78mm, d, = 1.24rnm, 

R, = 1.44, R, = 6.49, R, = 4.52, 

h, = 5.42, h2 = 0.563, h, = 0.328. 

From (31) P 1 -  - 1.32, P2 = 4.71, P, = 3.52. 

Therefore from (22) to ( 2 5 ) ,  

B, = 0.268, B, = -0.914, B, = 0.851 

Initial conditions were taken from the video recording as 

A, = O-O", a = -Zoo, El = 4.15mm, 

giving +, = 0.00, e, = 59.00, $, = ~ 7 . 0 0 .  

The shear rate y = - 0.97 s-l. 
Experimental measurements were made over 30 seconds, a t  intervals of 1 second. 

Theoretical results were obtained by a fourth-order Runge-Kutta integration of (7), 
incorporating the appropriate B,, initial conditions and y.  Numerical results are correct 
to a t  least three significant figures. Comparisons for A, 0,  4 arc shown in figures 8, 9 
and 10. 
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FIGURE 8. h us. t :  a, experiment aldata points; -, computations. Doubly periodic orbit 
characterized by: B, = 0.268,9, = - 0.914, B, = 0,851; A0 = O", 8, = 59", $ 0  = 67". 
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FIGURE 9. 8 us. t :  A, experimental data points; -, computations. 
Orbit parameters as for figure 8. 

Referring to  figure 8 for A, it is seen that the experimental maxima in lAl agree 
within about 1' with the computed maxima. The period of rotation (defined here as 
the time taken for A to return to  zero from positive values) shows agreement within 
a fraction of a second in about 30aeconds. Computedand experimentalreaults, however, 
are out of step by something under 1 second a t  the mid-times. I n  figure 9 for 6, the 
maxima are once more given accurately, though the experimental results show a less 
sharp minimum than the computations, which are again about 1 second out of step 
a t  the mid-time. Figure 10 shows g5 decreaaing with time, since y was negative in this 
experiment. A number of other runs gave similar relationahips between experimental 
and computed orbits. Bearing in mind the difficulty, in this work, of making precise 
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0 10 20 30 
I ( A )  

FIUURE 10. $ vs. t :  A, experimental data points; -, computations. 
Orbit parameters as for figure 8. 

measurements, and the large number of parameters determining the particle motion 
(initial conditions for 8, #, $ together with Bi and y )  the agreement overall seems 
satisfactory. The difficulty in determining a accurately has already been mentioned 
and for this reason no results for $ as a function of time are presented. However, a 
value of a had to be obtained to give the initial condition for $ in the computation. 
This is a likely source of error, and numerical experiments showed how a change of a 
few degrees in the initial condition for $ could have a significant effect on the computed 
orbit. 

To illustrate the form of the motion over a longer period, we show in figures 11-13 
results for computations in 0 < - yt < 250 (a negative y was used in the experiments). 
In  termsof a plot on the 8,$ plane, aa usedby Hinch & Leal (1979), the present example 
is of an open orbit, rather than one which continuously loops round the points 8 = $n, 
$ = 0 or in. Further computations illustrated how very small changes in initial 
conditions or Bi values converted the orbit to this latter closed type, where 8 passes 
through in, a phenomenon never exhibited by bodies of revolution. The transforma- 
tions under which equations (7) are invariant have been given by Gierszewski & 
Chaffey (1978), and have the same form as those given by Hinch & Leal (1979): 

These show that the orbit is reflected about $ = nn, & n = 1,2 ,3 ,  . . . provided that at  
$ = nn, 4 = nn + &radians. From figures 11 and 13 we see that a t  $ = O', qi = - 266', 
and when $ fist reaches - M O O ,  4 = - 108'; the symmetries about $ = 0 and - 180' 
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" 
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FIGURE 12. Computer predictions for 8. Orbit parameters as for figure 8. 

0 50 100 150 200 250 
-7.t 

FIGURE 13. Computer predictions for $. Orbit parameters as for figure 8. 

in figure 13 are thus only approximate. One similarly expects rough symmetry of lif 
about - 90" and - 270°, and of 8 about its peak and minimum values. These features 
are evident in figures 12 and 13. 

It now remains to decide how closely the experiments approached the idealization 
of a neutrally buoyant particle rotating without inertia effects in unbounded, plane 
Couette flow. 
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Settling rates for the particle were very low, being less than 0.01 cm s-l. Moreover, 
in the special orbits used to determine B,, forces due to vertical translation have no 
component in the direction of rotation and will not interact with it, In  assessing inertia 
effects it is not clear how to choose the characteristic dimension of the particle. 
However, using the diameter of a sphere having the same volume as the largest 
particle used (72 mm3), we get d = 0.5 cm and the Reynold8 number 

Re = yd2/,u = 0.04. 

The experiments of Poe & Acrivos (1975) for a sphere rotating in Couette flow show 
an increase of about 5 yo in the period of rotation as the Reynolds number rises from 
zero to one. In  similar experiments (Harris 1973), we have found that in the range 
0 < Re < 1 the period of rotation of a sphere T can be represented by 47r/(yT) = 
1 - 0.039Re4, which is consistent with this. In the absence of data on particles other 
than spheres, we take these results as indicating negligible inertia effects in the present 
work. 

In  discussing wall effects we use Brenner’s (1962) result for an arbitrary particle 
rotating in a bounded Couette flow. The torque on the particle is related to that 
produced in an unbounded flow, L,, by 

1 
- 

L 
L, - s - ~ ( a / 2 $ ) 3 + . . . ’  

where d is a characteristic particle dimension, 1 is a measure of its distance from the 
boundary (or boundaries) and K is determined by the form of the boundary. This 
result depends on certain assumptions which hold for the three orbits used to evaluate 
Bi, but do not hold for the general orbits. Available results indicate that taking 
K = 1 is likely to give a high estimate of wall effects in the present case. Given that the 
characteristic particle dimension occurs to the third power, its choice is crucial and 
can affect the predictions by one or two orders of magnitude. Taking d = 0.5 cm, the 
largest equivalent sphere diameter, together.with 21 = 2.7 cm, the annular gap width, 
one finds LIL, = 1.007. On the other hand, taking d equal to the largest dimension 
of any particle, 16 mm, an effect of 25 yo is predicted, but this is surely unrealistic. An 
elongated particle will spend much of its time close to the streamlines, and the influence 
upon it of the cylinder walls will be very largely determined by its second and third 
largest dimensions. In  no case was the second largest dimension of any particle greater 
than 0.3cm. The analyses of Wakiya (1957) and Ho & Leal (1974) for spheres in 
bounded Couette flow also indicate negligible wall effects, based on d = 0.5 cm. 

Trevelyan & Mason (1951) concluded that flow field curvature in a concentric 
cylinder device of the type used here increased the effective shear rate by a fraction 
equal to (d/R)2. In  the experiments to determine B,, d is now presumably taken as 
the largest horizontal dimension of the particle. R is the radius of curvature of the flow 
field. B, and B, will thus be more susceptible than B, to any effects which may occur. 
However taking the largest particle dimension, 16mm, with the flow field radius of 
curvature, 14cm, only 1.3% change in the effective y is predicted. Our results are 
believed to be accurate within & 10 yo in Pi. 

The authors are grateful to Dr E. J. Hinch for showing them the paper by Hinch 
& Leal, prior to its publication, and for his helpful comments on an earlier draft of 
this paper. 
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